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Abstract _ For automated robotic systems to handle limp materials, sensors are needed to

determine the actual properties of the material in the supply, the material itself, and at the

handling destination. This paper reviews 2D vision techniques with an aim toward satisfying

the sensory goals associated with the handling and in-process inspection of limp materials. The

2D vision techniques are summarized in a discussion of their applicability in the context of

typical questions asked of vision guided robotic systems.
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I. _TRODUCTION

For most manufacturing processes, the automated handling of parts by a machine requires the

parts to be properly positioned. In the case of handling limp materials, there is a significant

challenge since such materials do not satisfy the usual assumption that the part is rigid. Of

course, the rigid part assumption can be handled by stiffening the limp material or modeling the

behavior of the material. For sensory robotic systems to handle limp materials, sensors must be

used to determine the actual properties of the material supply, the material itself, and the

handling destination. A machine vision system is a particularly suitable, general-purpose

sensor. It is often the sensor of choice when there is a wide variety of parameters to be

measured. Here, the focus is on the 2D vision techniques which are particularly appropriate to

the sensory tasks that are associated with the robotic handling of limp materials.

To motivate the 2D vision techniques which are discussed, typical questions are listed in Table

1.1. These are posed to serve as an aid in identifying the various ways 2D vision might be used

to supply the desired answers. The list of questions is aimed at accomplishing typical tasks,

namely locating and acquiring a piece of limp material from a supply; determining the

orientation, alignment and proper placement of a piece of material; and performing limited in-

process inspection of limp materials which are handled by automatic systems.
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During the discussion which follows, it will be helpful to keep such questions in mind. First,

some elementary 2D vision techniques are presented. These techniques are chosen with an aim

toward satisfying the sensory goals which accomplish the typical tasks listed below. Then, the

2D vision techniques are summarized and discussed in the context of the typical questions

posed for the handling of limp materials.

Table 1.1 Questions to motivate 2D vision technique selection

= =

i

LOCATING AND ACQUIRING A PIECE OF LIMP MATERIAL FROM A SUPPLY.

O. Where is the stack of parts?

WHEN DEALING WITH A STACK OF PARTS:

1. Where is the topmost part?

2. Where can the part be grasped?.

WHEN DEALING WITH ISOLATED PARTS:

3. Is the part where is & expected to be?

4. How is the part resting?

DETERMINING THE ORENTATION, ALIGNMENT AND PROPER PLACEMF2qT

OF A PIECE OF MATERIAL.

5. What is the orientation of the part?

6. Is the part properly aligned?

7. How is the part resting?

PERFORMING LIMITED IN-PROCESS INSPECTION OF LIMP MATERIALS.

8. Is it the correct part?

9. Is it a good part?

L
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II. PREPROCESSING

This section begins the presentation of 2D vision techniques which can be applied to the

handling of limp materials. No attempt is made to be exhaustive; rather, the purpose here is to

direct attention to the variety of tools which are useful in this context.

Shading correction

Shading correction is used to transform a grey-level image into an image which approximates a

uniformly illuminated one. For each pixel, the intensity measured by a camera is the product of

the illumination incident on the reflecting surface, the surface reflectance, and the optical system

2
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of the camera. Further,the pixelvalue obtained depends on the transfercharacteristic(intensity

versus output)of the camera. In general,the transfercharacteristicof the camera needs to be

known tocompensate fornon-uniform illumination.Using a constantreferencelightsource and

varying the f-stopsof the camera lens,the grey-levelpixelvalue fora range of inputintensities

can be measured. This seriesof known aperturessettingsmay be used to estimate the transfer

characteristic.
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Frequently,however, the transfercharacteristicismodeled as a smooth exponentialfunctionof

theform

g = go(I/lo)v, (2.1)

where g and go arc observed and referencegrey-levels,I and Io are observed and reference

intensities.(Several contemporary solidstatecameras can be adjusted to have a _,parameter

value of one.) For thistransfercharacteristic,shading correctioncan be obtained by scaling

observed pixel values.The individualpixelcorrectionscalefactorsare found as follows.The

distributionof the non-uniform illuminationof the scene ismeasured by viewing a calibration

surface with a uniform, known reflectance.Usually the maximum over allthe pixelvalues is

taken as the referencegrey-levelgo.With thisinformation,observed grey-levelvalues can be

correctedto the valueswhich uniform illuminationwould have given (withinthe quantization

error).The correctionfactorisgiven by theratioof the referencegrey-levelto the calibration

grey-levelforthatpixel.That is,

kpixel= gref/gpixel (2.2)

gcorrccted= kpixe!guncorrected• (2.3)
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Automan'c threshold selection

Binary images may be thought of as being a special subset of grey-level images. They can be

obtained from grey-level images through the application of a two-valued transformation to each

pixel. Usually a simple threshold is used for the entire image to segment it into object and

background pixels. The pixels with grey-levels above the threshold are assigned one value and

the rest the other value. If care is taken in obtaining approximately uniform illumination or if the

contrast is strong enough (for example, when back lighting is used), then a single threshold

value for the entire image may be satisfactory. Clearly, it is desirable to be able to use a single

threshold value rather than to use extra processing effort to compensate for non-uniform

illumination. The extra effort expended to obtain high quality images is rewarded by avoiding

the repeated performance of extra preprocessing steps on every image. Corrections may be

made to grey-level images for non-uniform illumination. Conventionally, the image is

partitioned into non-overlapping regions. The threshold is adjusted in each region to

approximate the result for a uniformly illuminated scene.
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Automatic threshold selection requites that the image have good contrast and the regions be

separable by means of a single threshold. Automatic selection of the threshold is based on the

assumption that the histogram of each region generally has both object and background pixels.

Various rules may be used to select the threshold for each region. If the histogram has two well-

defined peaks with a flat valley, then some valley point is chosen as the threshold. Finding an

extreme value of a criterion function is an objective way to select a good threshold which

divides the histogram into two classes, object and background. An algorithm ['Duda and Hart,

1] selects the threshold T which minimizes the criterion function JI(T) given by.

ET E255.II(T)= n=0 [h(n) - rob(T)]2 + n=T+1 [h(n) - mo(T) 2] , (2.4)

where T is the threshold, h(n) is the histogram function, and mb and mo are the mean values of

the background and object pixels.

More recendy, the following criterion function J2(T) was suggested for threshold selection

[Otsu, 2].

,12(T) nb(T) n°(T) [rob(T)-m°(T)]2
= [nb(T) + no(T)] '

(2.5)

W
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where T is the threshold, rib(T) and no(r) are the number of background and object pixels, and

mb and mo axe the mean values of the background and object pixels. This is a smooth function

and usually has a single maximum. When there is more than one maximum, then each

maximum is examined to determine which maxima are associated with good thresholds. Two

additional criteria, valley checks, are used [Kittler and Illingsworth, 3].

E1 _1-I h(% +j) < j=-I h[mb(_) + j] (2.6)

and,

,V._l E Ij=-1 h[mo(q:) +j] (2.7)

where h(.) is the histogram function, c is the threshold corresponding to the local maximum,

and mb and mo axe the mean values of the background and object pixels for this threshold

selection. These checks compare local averages of the number of pixcl values about the chosen

threshold and the class means, mb and too. If there are two dominant grey-levels, both valley

checks will be satisfied. For some images, only one of the check conditions may be satisfied;

this is a signal that the underlying two dominant grey-level assumption may not be satisfied and

the maximum found may not correspond to a good threshold.
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Connectivity

When images are represented as a rectangular array of pixels, the determination of which

regions are connected is complicated by the restriction that the sum of the connected neighbors

for an object pixel and for a background pixel equals 12. A problem arises because it is natural

to consider the 8 adjar..ent pixels of an object pixel as its connected neighbors. This then requires

that background pixels be restricted to having just 4 adjacent pixels be designated as its

connected neighbors. Clearly, the roles of the two kinds of pixels can be reversed. However, 8-

connected objects have intuitive connection properties. (Some prefer to work with a symmetric

definition where both object and background pixels have 6 neighbors [Agin, 4]; however, the

selection of the 2 adjacent, non-connected pixels leads to other interpretation anomalies such as

direction sensitive diagonal connections.) The different neighborhood definitions and a sample

image array are shown in Figure 2.1.

m
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BINARY IMAGE SEGMENT

Figure 2.1. Connectivity neighborhoods and sample image array.

Erosion and dilation

Erosion and dilation are dual operations which are applied to regions in a binary image. The

erosion operation removes pixels from an object region which are adjacent to a background

pixel. That is, such object pixels are relabeled as background pixels. Similarly, the dilation

operator relabels background pixels which are adjacent to object pixels. A comparison of
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erosion-dilation operations applied in both sequences is shown in Figure 2.2. The two

operators are duals since eroding an object dilates the background and vice versa. These

operators have many uses. They are used for postprocessing thresholded images, for generating

templates, for emphasizing or isolating irregularities, etc.
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EROSION-DILATION-DILATION-EROSION

DILATION-EROSION-EROSION-DILATION

COMPARISON

Figure 2.2. Comparison of the results two sequences of erosion and dilation operations.

Postprocessing of binary images is employed to rationalize object regions by removing artifacts

produced by the thresholding operation. For example, a common defect is the presence of

isolated noise pixels, extra peripheral pixels, or embedded background pixels. The erosion

operator is used to remove isolated noise pixels and to shave peripheral whisker pixels. The

dilation operator is used to fill in holes made by missed object pixels. For this purpose, a

sequence of both operators is typically applied in performing the rationalization.

As defined above, clusters of noise pixels with a diameters up to 2 pixels and whiskers of 1

pixel length or 2 pixels width are removed in a single erosion operation; holes up to 2 pixels

wide are tidied in a single dilation operation. Thus the sequence of erosion, dilation, dilation,

and erosion operations usually removes both kinds of defects and restores the object to its

normal size. Alternatively, the sequence of dilation, erosion, erosion, and dilation operations

can also be used. Differences between the actual performance of these two operator sequences

arise when the initial operator changes the topology of the object region. Two object regions

6
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separated by no more than 2 pixels will become one region if the dilation operation is applied.

Embedded holeswithin2 pixelsof the boundary of theobjectregionwillbecome joinedto the

background iftheerosionoperationisapplied;ifdilationisimmediately applied,thegap may be

closed again.

Masks or templates can be generated from the binary image of objects in a similar manner. In

fact,therationalizedobjectregioncan serveas a mask toidentifyembedded holes and thelike.

To suppress spuriousresponses when using such a mask, extradilationoperationscan be used

to make the mask oversized. In thisway small whiskers and small holes will be ignored.

Difference images produced by these masks are useful in emphasizing irregularitiesand

departuresfrom thenominal objectregiontopologicalcharacteristics.

l
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IlI. GREY-LEVEL IMAGE SEGMENTATION

Grey-level images may be segmented by a variety of techniques. In this section, one geometry-

and two intensity-basedtechniques arepresented.In general,segmentation techniques have to

be carefullyselectedtomatch thenatureof the scene being segmented.

Structured illumination

Structured illumination is a technique which is sensitive to relative depth geometry. Thus, it can

be used to segment a grey-level image by extracting silhouettes of objects as well as detecting

surface irregularities on objects, such as wrinkles. The segmentation results in a binary image

that is obtained by directly thresholding the grey-level image of the structured light pattern. The

difference of grey-level images of the scene, with and without the structured light pattern, can

be used to overcome interference from extraneous illumination. Segmentation is provided by

noting the regions where there are deviations from the expected nominal structure of the

projected pattern. The deviations are usually due to relative depth differences between regions

of the scene. These deviations can be interpreted to obtain geometric information such as

geometric edge location and orientation.

Consider a plane-of-light projector as shown in Figure 3.1. The nominal pattern for the

intersection of the plane-of-Light with a flat, reference surface is a straight line. Hence the

nominal location of the line in the image corresponds to surfaces which are the same height as

the reference. When the plane-of-light is inclined, relative surface height differences result in

displacements of the line perpendicular to the direction of the nominal line pattern. The relative

height difference is proportional to the displacement. (In fact, the displacement can be computed

for each pixel of the line to provide a 3D slice through an object.)
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PLANE-OF-LIGHT

CONVEYOR
LIGHT STRIPE DISPLACEMENT

Figure 3.1. Plane-of-light silhouette extraction.

Silhouette extraction does not require any calculation. Rather the silhouette is obtained by

simply noting where the nominal line pattern is broken. The number of projected plane-of-light

measurements depends upon the application. A simple implementation which extracts the

complete silhouette is obtained by moving the object relative to the line pattern. This can be

realized by having the object on a conveyor, the projector on a track, or a robot arm carry all or

part of the structured illumination and camera system. Multiple planes-of-light are a useful way

to get more information from each image. A practical camera system for silhouette extraction

would employ a linear array camera to provide faster scan times and simplify the silhouette

extraction computation [Baird, 5].

Edge extraction

Edge extraction techniques associate large changes in grey-level values with geometric edges.

Thus edge extraction is performed by means of edge detectors which are based on discrete

approximations to directional derivative operators. Two orthogonal directional operators are

used together as a gradient vector operator.

Popular edge detection operators include the 2x2 Roberts cross operator, and the 4-neighbor, 8-

neighbor, and Sobel 3x3 operators. The Roberts cross operator effectively computes a diagonal

difference which is centered at the 4-comer point, and is slightly more sensitive to higher spatial

frequencies because of the size of the neighborhood [Roberts, 6]. The 4-neighbor operator

computes pixel-centered orthogonal differences, has the least smoothing of the 3x3 operators.

The 8-neighbor operator computes a weighted sum of orthogonal and both diagonal differences,

8
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has intermediate level of smoothing. The Sobel operator also computes a weighted sum of

orthogonal and both diagonal differences with the orthogonal difference given a relative weight

of 2, has the most smoothing and the smallest gradient direction error. The directional

differences, gradient magnitude and direction expressions ate listed in Table 3.1.
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Table 3.1

Operator

Vector ed[;e detection operators

Directional differences

Roberts cross

4-neighbor

8-neighbor

Sobel

dl- Pi+ld+l "pij

d2 = pi,j+l " pi+l,i

di = pi+ld - Pi-ld

di = Pid+l - Pi,i-1

si = Pid-1 + pi,j +Pid+l

sj = Pi-lj + Pij +pi+ld

di = Si+ld - Si-ld

di = si,i+l - si,i-1

si"" Pid-I+ 2pij +pij+l

sj= Pi-Ij+ 2pid +pi+Ij

di = si+Ij- si-Id

di = si,i+l- si,i-1

Gradient rna_nitude

mij = _/dl 2 + d2 2

mij "_4di2 + dj 2

mij = "_di 2 + dj 2

mij = _4di 2 + dj2

Gradient direction

Oij = arctan(d2/dl) - n/4

Oij= arctan(d/di)

oij = arctan(d/d0

eij = arcm (dj/di)

Some prefer to use a scalar edge detection operator based on discrete approximations to the

Laplacian as given in Table 3.2 or the Laplacian of a Gaussian smoothing filter [Horn, 7]. The

argument is made that such operators improve noise suppression and edge localization

properties. The tradeoff is between this performance improvement and the penalty represented

by the loss of edge direction information. Commonly, an attempt is made to make up this loss

by introducing external knowledge about the edge properties or some form of edge continuity

assumption. In the extreme case, a scalar directional edge detector may be employed to obtain

localedge direction information.

Table 3.2 Scalar edge detection operators: Laplacian approximation

Operator Filter output
m

4-neighbor mij = 4pij - (Pi-ld + Pi+ld +Pid-1 +pij+l)

, .

8-neighbor mij = 8pij - (Pi-ld-1 + Pi-lj + pi-ld+1 +pid-1 +pij+l + pi+lj-1 + pi+lj pi+ld+l

m
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Region growing

Region growing exploits small changes in grey-level values to aggregate adjacent pixels into

common regions. Under uniform illumination, such regions would be associated with (almost)

planar faces on the object. If only local differences are used, there can be a wide range of pixel

values clustered together in the same region. On the other hand, if distant differences are used,

the segmentation which is achieved often depends on the order in which the region growing

was performed. Relaxation methods are employed to minimize this latter effect.

w
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IV. BINARY IMAGE SEGMENTATION

Binary image segmentation requires the blobs in the scene to be identified or labeled. The

highest level of description of the segmentation is given by the connected components tree.

Isolated blobs can then be described in terms of their contours or by their moments (Section V).

Connected components

This analysis produces a connection tree which identifies the objects in the image, the holes

entirely enclosed by each object, the objects found inside of each hole, and so forth. As a

byproduct, connected component analysis usually produces parameters which are specific to

each element in the connectivity tree: such as its area, centroid, moments and axes of inertia,

etc. These parameters are treated in Section V. The position and orientation of any blob is easily

computed from such parameters.

Contour e.x_action

A search technique such as contour extraction may be used to segment a binary image into

distinct blobs. Contour extraction requires a starting point on the edge of the blob. For

sequential computers, an easy way to locate a starting point on the blob edge is to scan along a

row or column until the edge of a blob is crossed. If a reference point is known to be interior to

the blob, then starting the scan for the edge from the reference point is efficient. A standard

edge following lug is used to extract a contour description of the blob. A simple edge following

bug traces the contour in a fixed direction [Ballard and Brown, 8]. At each step, it examines its

neighbors in order while keeping the interior on the same side as it traces the contour. If is

outside the blob, it searches for the f'trstneighbor in the forward direction which is in the blob

and conversely. This bug will fail on thin, hair-like blobs; using two bugs which trace the

contour from the left side and from the right side solve this problem [Dessimoz, 9]. The

10
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extracted contour description allows the position and orientation of the blob to be determined by

techniques treated in the next section.

L

w

V. IMPLICIT SHAPE FEATURES

These features are obtained by using information which is not constrained to be local to the

immediate neighbor of any particular pixel. Such features include moments, transforms,

topological properties, and interfeature relationships. These features may be used to describe the

shape, position and orientation, or other patterns for purposes of location or recognition.

Shape description

To describe the shape of an object, the object must be distinct from the other objects in the

image; that is, the image must be segmented and the object isolated from the rest of the scene.

Hence, for this discussion, it is assumed that there is only one object present. Shape may be

described in terms of implicit parameters or explicit geometry-based parameters such as

boundary curvature discontinuities (see Section VI).

lmplicitparameter descriptions are those as given by the 213 mechanical (or statistical) moments,

or by Fourier transform coefficients for the uniformly weighted pixels, for example. For single

valued objects as obtained from a binary image, all the shape information is contained in its

boundary relative to the background (and embedded holes). Because the interior pixels of the

object dominate these parameters, some researchers treat the interior plxels as background

pixels and give them zero weight. This increases the sensitivity of such parameter calculations

to perturbations in the number and location of the peripheral pixels.

The lower order moments are also generally used in the preparatory steps of other

computations. The zero-order moment gives the area of the object. The Rrst-order moments

give the coordinates of the center of mass, the centroid - an object reference position point. The

second-order central moments are computed with respect to the centroid as the coordinate origin

and provide a reference orientation direction (with an ambiguity of re).

The mechanical/statistical moments, up to the second-order, are computed as follows. Let Pij be

the pixels with non-zero weights. Then, the area is given by

the centroid (ml0, m01) by

mOO = Zi Zj Pij, (5.1)

m10 = (1/moo) Zi Zj iPij,

mOl = (1/moo) gi Zj jPij, (5.2)

11
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and thecentralmoments of inertiaby

m'20 = (I/moo) Zi 5"j(i-m10) 2 Pij,

re't1= (1/moo) gi gj (i-mlo)(j -too1)Pij,

m'02 = (I/moo) Zi Zj G -m01) 2 Pij. (5.3)

The direction of the axis of the least moment of inertia is often used as a modulo--_r orientation

direction reference. Higher-order moments can be computed in a similar fashion. Since the

third-order moments arc modulo-2r43, they can be used to disambiguate the polarity assignment

for the direction of the axis of least moment of inertia.

Polar Moments

Some rotational invariant moment measures (polar moments) can be computed directly from the

mechanical moments given above. Define the polar moment magnitude as

Mij = _Cij 2 + Sij2

where the Cijand Sijarcrelatedtothemij by the followingrelationships:

(5.4)

Coo=moo So0=O

CII = m10 SII = toO1

C'20 = m'20 + m'20 S'20 = 0

C'31 - m'30 + m'12

C'22 - m'20 - m'02

C'33 = m'30 - 3 m'13

S'31 = m'03 + m'21

S'22 = 2 m'l 1

S'00 = 3 m'00 - m'00 (5.5)

Contrast invariance is provided by dividing the higher-order moments by the area, moo. Image

size invariance is provided dividing the polar moment Mij by R 2i, where R is the radius of

gyration computed as

R = "/(m'20 - m'02)/m00 • (5.6)

SRl-type geometry-based parameters

Originally developed at SRI in the 1970s, such features (frequently referred to as SRI features)

[4] have been used to describe not only the object's shape but also its topology. Efficient

algorithms were developed in the early 1970s, principally at SRI International. These

algorithms produce explicit geometry-based descriptive parameters which are primarily used for

feature recognition. SRI used special purpose vision capture hardware which directly output a

run length representation of the binary image of the scene; this was further processed by a

minicomputer. Similar vision systems were marketed in the US and Europe in the late 1970s. A

partial list of SRI-type features is given in Table 5.1.

u
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Table 5.1 Partial list of SRI:typc features

The

The

The

The

The

The

The

The

surface area of the object;

length of the enclosing perimeter;,

total area of all holes;

maximum distance measured from the centroid to perimeter pixels;

minimum distance measured from the centroid to perimeter pixels;

root-mean-square distance measured from the centroid to perimeter pixels;

angle(s) between the rays from the centroid to the maximum distance perimeter pixel(s);

angle(s) between the rays from the centroid to the minimum distance perimeter pixel(s)

The angle to the centroid of embedded holes, corner pixels, and other features, measured

relative to the direction of the ray from the centroid through the maximum perimeter pixel; and

The compactness of the blob, defined as the ratio of the square of the perimeter length to the

area with a minimum value of 4_ for a circle.

m
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VI. EXPLICIT SHAPE FEATURES

The shape of the perimeter of an object can be represented by a sequence of the directions of

steps taken as the entire perimeter is traversed. The direction sequence is cyclic. If the starting

pixel is chosen as the maximum distance pixei, for example, the sequence of relative direction

changes is (ideally) unique and rotationally invariant. Because of the spatial quantization effect

of array cameras, the rotational invariance is only approximate. However, if the step distances

are taken into account and the Fourier Series coefficients are computed, then removing the

higher-order Fourier coefficients of the relative direction sequence (that is, the sequence is

smoothed by a non-causal low-pass filter) gives a slightly rounded but more rotationally

insensitive representation [9].

Chain code

The chain code is a representation of the perimeter of an object in terms of the step direction as

the perimeter is traced one pixel at a time. Traditionally, the directions are taken to be either the

4-neighbor or 8-neighbor directions. If the step neighborhood is extended beyond the 3x3

neighborhood, somewhat better direction angular resolution can be obtained. Alternatively, the

sequence of step directions can be smoothed over a window covering several steps. In all cases,

it is important to take the pixel-to-pixel distances into account or suffer severe distortions when

the perimeter is rotated on the rectangular image lattice. The chain code also exhibits a

discontinuity if there are 2rr direction changes along the perimeter. Modulo-2_ reduction must

13
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be used to handle rotations.Differentialdirectionchain codes are weft suitedfor a rotation

invariant shape representation.

Curve fining

In addition, a plot of the differential directions versus the step distance around the perimeter

provides an easy way to extract a constant curvature, or concurve, representation of the

perimeter [Perkins, 10]. Thus the eoneurves represent the perimeter as connected segments of

straight lines and circular ares. In the differential direction vs. step distance plane, eoncurves

form horizontal lines. Hence, the best horizontal line fit automatically fmcls the break points for

the concurve segments.

Line fim'ng

Fitting a line to a set of scalar point locations is usually done according to a best-fit technique.

The eigenveetor with the larger eigenvalue which passes through the eentroid of the cluster of

points is frequently computed and gives the least square error line fit. If the points carry

direction information, then the direction histogram can provide not only the direction of the best

fitting line, but also identify those points which are farthest from the line. Elimination of such

outliers usually improves the quality of the line fit. Hough transform techniques which are also

used in scalar point straight line fitting are made greatly more efficient by the inclusion of line

direction information to limit the dispersion of the Hough accumulator entries [8].

VII. SUMMARY DISCUSSION AND CONCLUSION

There are a large number of techniques which might be used applied to the handling of limp

materials. A brief review of some promising techniques has been given. The short list of

application related questions from Section I (repeated here) give a context to the issues

discussed.

O. Where is the stack of parts? This question has a trivial answer if the parts are where they are

expected to be. If not, prior knowledge about the supply stack should provide a guide to the

selection of appropriate 2D vision techniques. Structured light appears to be the most universal,

reliable technique to answer such questions.

1. Where is the topmost part on a stack of parts? Structured light again provides the most

reliable way to locate the topmost layer of fabric or leather in a stack. Otherwise, grey-level

edges can be used to extract an estimate of the geometric edge locations. Binary blob extraction

might also suffice.
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2. Where can the topmost part be grasped? The answer to the question depends strongly on the

gripper selected; the part itself can constrain the available holdsites. Surface attachment

grippers, such as needle point devices, require a site which is virtually fiat and of sufficient

size. Structttred light and binary blob extraction are the most promising approaches. Clamping

grippers need to locate at least one edge of the topmost part. Structured light is indicated again,

with grey-levetedge detection a reasonable alternative.

3. Is the isolated part where is is expected to be? This question requires the part position to be

be checked. A binary image blob centroid location is sufficienL Similar computations can be

performed on contour or edge data.

4. How is the isolated part resting? This requires the part orientation to be determined. Again

blob moments, especially polar moments, are usually sufficient. Explicit geometric features

such as corner and hole locations can provide robust orientation estimates.

Position and orientation corrections. The displacement between the actual and nominal feature

centers or centroids can be used, together with robot eye-to-hand calibration, to update the

nominal location commands in the robot control program. Any rotational correction which may

be needed is obtained by applying the camera horizontal and vertical scale factors to the

components of the actual and nominal reference direction vectors. Rotational corrections can

also be computed by projecting the image coordinates onto a robot coordinate system calibration

plane. (Note that angular measurements are sensitive to image coordinate scale factors, but are

independent of the origin of the coordinate system employed.)

5. What is the orientation of the part? Often it is prudent to verify the orientation of a part while

it is in the grasp of the gripper. Parts sometimes suffer from minor slippage when initially

grasped. Question 4 techniques can be applied to this case. The presence of the gripper in the

image needed to be accommodated.

6. Is the part properly aligned? This is also a verification step to check the part in the gripper

and is approached in a manner similar to that in question 3.

7. How is the part resting? This is a verification of the quality of the placement of the part at its

target location. It includes position, orientation and alignment with other parts. If questions 5

and 6 have been answered, then only the relative alignment needs to be verified. Structured light

is the indicated approach. Grey-level edge detection is a reasonable alternative to detect

misaligned edges. Prior knowledge needs to be exploited to simplify the interpretation of the

possibly cluttered scene image.
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8. Is it the correct part? There is always a need to verify the correctness of the part being

handled. This is simplest when the part is isolated or being held in the gripper. If the question is

asked in response to an alignment failure, then the task is more difficult. However, the

extraction of the most salient features can simplify getting the answer.

9. Is it a goodpart? This is a variation of question 8 which focuses on the quality of the correct

part or on its placement. For example, surface irregularities such as wrinkles can be detected by

using structured light patterns with an area array camera. Departures from the nominal 2D

pattern provide the means to locate surface smoothness irregularities. By isolating the

departures from the nominal pattern, the direction of the wrinkle and, hence, the direction to

apply the smoothing action can bc determined. Small wrinkles could be ignored, if appropriate,

by noting the magnitude of the pattern deviation.

Table 7.1. Suggested techniques versus t),pical question

Sffuctured lightin!

Grey-level ed[e data

Binary, blob data

O. Where is the stack of parts?

Contour/ed[e data

Blob/Dolar moments
Salient features

1. Where is the topmost part on the stack?

2. Where can the topmost part be grasped?

surface gripper

clamping gripper

3. Is the isolated part where it is expected to be?

4. How is the isolated part resting?

5. What is the orientation of the held part

6. Is the held part properly alignmented?

7. How is the part resting[?

8. Is it the correct part?

X

X*

X

X

X

X9. Is the part good?

X X

X .

• X

X X

• •

X* X* .

• X

X X

* The presence of the gripper in the scene must be accommodated.

X

X

X

X

X

X

X

X
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Conclusion

Of the many 2£) vision techniques which are applicable to the vision guided handling of limp

materials, the use of structured light patterns, binary blob analysis, and simple edge extraction

techniques seem to be able to provide answers to the typical question encountered in

applications. The suggested techniques are listed for each question in Table 7.1. Other, more

sophisticated techniques may be requixed to handle special cases which fall outside the

simplified scenario treated in this paper.
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